updates readme
This commit is contained in:
parent
661e3b390f
commit
8f5f916bfe
@ -42,7 +42,6 @@ This repository contains a **PDF-based product query assistant** built using **L
|
|||||||
```bash
|
```bash
|
||||||
pip install -r requirements.txt
|
pip install -r requirements.txt
|
||||||
```
|
```
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
## **Configuration**
|
## **Configuration**
|
||||||
@ -70,7 +69,6 @@ Replace the placeholder API key or use environment variables for production:
|
|||||||
CREATE_FAISS_INDEX = True # To create a new index
|
CREATE_FAISS_INDEX = True # To create a new index
|
||||||
CREATE_FAISS_INDEX = False # To load an existing index
|
CREATE_FAISS_INDEX = False # To load an existing index
|
||||||
```
|
```
|
||||||
On initial start set this to TRUE
|
|
||||||
---
|
---
|
||||||
|
|
||||||
## **Usage**
|
## **Usage**
|
||||||
@ -91,7 +89,7 @@ Replace the placeholder API key or use environment variables for production:
|
|||||||
## **Folder Structure**
|
## **Folder Structure**
|
||||||
|
|
||||||
```
|
```
|
||||||
xbo-product-query/
|
CodeChallenge/
|
||||||
│
|
│
|
||||||
├── app/
|
├── app/
|
||||||
│ ├── main.py # Application entry point
|
│ ├── main.py # Application entry point
|
||||||
@ -115,9 +113,8 @@ When scaling up following optimization can be applied:
|
|||||||
|
|
||||||
- Allow appending new documents to the existing FAISS index without rebuilding it entirely.
|
- Allow appending new documents to the existing FAISS index without rebuilding it entirely.
|
||||||
|
|
||||||
2. **Memory and Disk Management**
|
2. **Use a Vector Store DB**
|
||||||
- Use a persistent FAISS index stored on disk, which can be loaded as needed.
|
- Use a Vector DB for scalibility
|
||||||
- Enable FAISS's `diskann` mode to load only the necessary portions of the index into memory, reducing RAM consumption.
|
|
||||||
|
|
||||||
3. **Batch Processing of Queries**
|
3. **Batch Processing of Queries**
|
||||||
- Break large queries into smaller batches to improve response times.
|
- Break large queries into smaller batches to improve response times.
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user