Make the hosue price predictor more simple

This commit is contained in:
Jacob Windsor 2025-02-19 17:38:26 +01:00
parent 9cbbdcf323
commit dc0d2acf53

View File

@ -1,45 +1,16 @@
import random
from dataclasses import dataclass
from typing import List
@dataclass
class Prediction:
predicted_price: float
confidence_score: float
similar_listings: List[float]
class HousePricePredictor: class HousePricePredictor:
""" """
Mock ML model that predicts house prices. Mock ML model that predicts house prices.
In a real scenario, this would load a trained model. In a real scenario, this would load a trained model.
""" """
def __init__(self): async def predict(
# Mock initialization - in reality would load model weights
pass
def predict(
self, square_feet: float, bedrooms: int, bathrooms: float self, square_feet: float, bedrooms: int, bathrooms: float
) -> Prediction: ) -> float:
"""
Mock prediction method that returns:
- predicted price
- confidence score
- similar listing prices
"""
# Mock prediction logic
base_price = square_feet * 200 base_price = square_feet * 200
bedroom_value = bedrooms * 25000 bedroom_value = bedrooms * 25000
bathroom_value = bathrooms * 15000 bathroom_value = bathrooms * 15000
predicted_price = base_price + bedroom_value + bathroom_value predicted_price = base_price + bedroom_value + bathroom_value
# Add some randomness to make it interesting return predicted_price
confidence_score = random.uniform(0.8, 0.99)
similar_listings = [
predicted_price * random.uniform(0.9, 1.1) for _ in range(3)
]
return Prediction(predicted_price, confidence_score, similar_listings)