import random from typing import List from dataclasses import dataclass @dataclass class Prediction: predicted_price: float confidence_score: float similar_listings: List[float] class HousePricePredictor: """ Mock ML model that predicts house prices. In a real scenario, this would load a trained model. """ def __init__(self): # Mock initialization - in reality would load model weights pass def predict( self, square_feet: float, bedrooms: int, bathrooms: float ) -> Prediction: """ Mock prediction method that returns: - predicted price - confidence score - similar listing prices """ # Mock prediction logic base_price = square_feet * 200 bedroom_value = bedrooms * 25000 bathroom_value = bathrooms * 15000 predicted_price = base_price + bedroom_value + bathroom_value # Add some randomness to make it interesting confidence_score = random.uniform(0.8, 0.99) similar_listings = [ predicted_price * random.uniform(0.9, 1.1) for _ in range(3) ] return Prediction(predicted_price, confidence_score, similar_listings)