import os import joblib import numpy as np from backend.app.dtos.house.house_features import HouseFeatures class HousePricePredictor: """ Mock ML model that predicts house prices. In a real scenario, this would load a trained model. """ def __init__(self): self.model = joblib.load("backend/app/ai_models/price_predictor.pkl") def predict(self, features: HouseFeatures) -> float: X = np.array([[features.square_feet, features.bedrooms, features.bathrooms]]) return self.model.predict(X)[0] * 100000